Towards Integrated Pest Management in Azalea to Control Broad Mite

Luypaert, G. & Van Delsen, B.

07/03/2012 BNL-SHS

Institute for Agricultural and Fisheries Research

Introduction

Situation

- Pot azalea is the most important flowering pot plant in Belgium (35 million plants/year)
- Problems caused by broad mites have become increasingly important
- Number of authorized products declined
- Obligation to apply IPM from 2014 onwards

Introduction

Broad mites

- Family: Tarsonemidae (> 500 species)
 - o Polyphagotarsonemus latus
- 150 μm
- Life cycle: Egg Larva Nymph Adult
- Development on azalea (egg -> adult):
 - o 13,3 days at 15°C
 - o 6,5 days at 20°C
 - o 4,2 days at 25°C

Introduction

Prevention

- Clean start material
- Good hygiene
- Resistant cultivars

Chemical Treatments

- Different chemicals
- Cocktails

Non-Chemical Treatments

- JA-hypothesis
- Predatory mites
- Alternative culture techniques

Research

Broad mite

Preparations

- Cultivar selection
- Clean start material
- Economic thoughts

Coordination

- Training employees
- Treatments

M

Observation

- Population dynamics
- Monitoring
- Early discovery

Practice

P

Clean start material

Desinfection

- Reducing problems by starting with clean cuttings
- Hot water treatments of cuttings at 46 or 48°C for 3' to 9'.

Predatory mites for preventative control

Predatory mites in azalea

- Tests for broad mite control
 - o A. swirskii most efficient
 - o *A. limonicus* has potential
- Tests for numbers of predatory mites per 100 m²
 - O No difference using 50, 75 or 100 predatory mites

- => Preventative control by predatory mites has potential
- Essential for proper use of predatory mites is knowledge about broad mite biology
 - Development rate at different temperatures
 - Cold tolerance

Preliminary work

- Screening for resistance against broad mites was done before in:
 - o Chilli (Ahmed et al., 2001)
 - o Watermelon (Kousik *et al.*, 2007)
 - => Resistance was found in several cultivars from both plants
- Screening of a representative selection of Rhododendron spp.
 - Representative selection based on different traits
 - ✓ Commercial types
 - ✓ Plants with hairy leaves and stem
 - ✓ Plants with herbaceous soft leaves
 - ✓ Plants with firm leaves

Experimental layout

- 30 genotypes
- 4 replicates
- 7 weeks of evaluation

Evaluation

- Scoring genotypes
 - o 5 classes based on visual symptoms
 - o Twice a week
- Quantitative detection
 - Detection in ethanol and counting under binocular
 - 3 and 7 weeks after infection using three tips from one plant

Plant	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
	n = 4	n = 4	n = 4	n = 3	n = 3	n = 3	n = 3
1	0	0	0,5	1,33	1,33	2	2
2	0	0	0	0,67	0,67	1	1,33
3	0	0	1	1,33	2	2	2
4	0	0	0,5	1,33	1,33	1,33	1,33
5	0	0,5	0,5	1,67	1,67	2,33	2,33
6	0	0,5	1,5	2	2	2,33	2,33
7	0	0	0,25	1	1,33	1,33	1,33
8	0,25	0,75	2	2	2,33	2,33	2,33
9	0	0	0,5	1,33	1	1,33	1,33
10	0	0,25	1,25	2	2	3	3
11	0	0	0,5	1	1,67	2	2
12	0	0,25	1	1	1,67	2	2,33
13	0	0,25	0,75	1,33	1,33	2	2
14	0	0,5	1,25	1	1	2,33	2,33
15	0	0,25	1	1,33	1,67	2,33	2,33
16	0	0	1	1,33	1,67	2	2,33
17	0	0	1,25	2	2	2,33	2,33
18	0	0	0	0,33	1	1	1,33
19	0	0	1	1,33	2,33	2,33	2
20	0	0	0	0	0	0,67	0,67
21	0	0	0,75	2	1,67	2,33	3
22	0	0	0,5	0,33	1	1,33	1,67
23	0	0	0,25	0	0,33	0,33	0,67
24	0	0	0	1,33	1,67	1,33	1,33
25	0	0	0	0	0	0	0
26	0	0	0,25	0	0	0,33	0,67
27	0	0	0	0	0	0,33	0,33
28	0	0,5	1	1,67	2	2,33	2,67
29	0	0,5	1,25	1,67	2	2,67	2,67
30	0	0	1,25	1,33	2,33	2,33	2,67

Conclusions

- Genetic variation is available BUT repetition is needed
- Lag between detection of mites and first visual symptoms
- Explosive increase in number of mites followed by a decline (also reported by Gerson et al., 1992)

Commercial
Hairy leaves and stem
Herbaceous soft leaves
Firm leaves

JA to induce resistance in azalea?

JA = Jasmonic Acid, a natural occurring plant hormone

- Involved in morpho-physiological changes in shape and structure:
 - Senescence 1
 - Root growth
 - Shoot growth -
 - o Tuber formation **↑**
 - Number of inflorescences 1
 - o ...
- But also role in DEFENCE!! 1

JA to induce resistance in azalea?

Plant defense

• Interaction between three main players (basic model):

JA/Ethylene ←→ Salicylic Acid

- Depending on:
 - Type of plant
 - Type of stress, pathogen
 - Environment
 - => Complex process

JA to induce resistance in azalea?

Literature

- Induction of JA enhances resistance among:
 - o Powdery mildew in grapevine (Belhadj *et al.*, 2006)
 - o Thrips in *Arabidopsis* (Abe *et al.*, 2008)
- Broad mites activate JA pathway:
 - Expression of LOX genes is induced in cucumber under broad mite infection (Grinberg et al., 2005)
- Jasmonate induced plant responses limit mite proliferation:
 - Two-spotted spider mites in Cotton (Omer et al., 2001)
 - o Two-spotted spider mites in *Arabidopsis* (Li *et al.*, 2004)
 - Two-spotted spider mites in Pansy and Impatiens (Rohwer & Erwin, 2010)

=> **Hypothesis**: Activation of JA pathway may induce resistance against broad mites in pot azalea

JA to induce resistance in azalea?

JA to induce resistance in azalea?

JA to induce resistance in azalea?

Future research

Apply tool after broad mite infection in pot azalea

Successful experiments

- Possible applications:
 - Early discovery of disease
 - Screen for genotypes in early responding
 - Test elicitors that attract predatory mites
 - Search for biocides
 - o ...

Conclusions

Working on **alternative strategies** overcoming the broad mite problem in pot azalea:

- Hot water treatment of cuttings can possibly reduce the number of mites during rooting
- Preventative control is possible using **predatory mites** e.g. *A.* swirskii
- Genetic variation towards resistance against broad mites is present in the germplasm
- Applying MeJA as elicitor induces the **jasmonic acid** defense pathway, potential applications lie ahead
- Better insights in broad mite **population dynamics** is necessary for the development of new alternative IPM strategies
- Training growers in **monitoring** is essential for implementing alternative IPM strategies

Thanks to...

- Magali Losschaert
- Johan Witters
- Ellen De Keyser
- Jan De Riek
- Tine Maes
- Johan Van Huylenbroeck

- Bart Van Delsen
- Els Pauwels
- Johan Ongena
- Dirk De Cock
- Bruno Gobin

Patrick De Clercq

Thank you for the attention!

Gil.Luypaert@ILVO.Vlaanderen.be

07/03/2012 BNL-SHS

Institute for Agricultural and Fisheries Research

